无人机在沉积学中的应用现状及展望Applications status and prospects for using unmanned aerial vehicle in sedimentology
孙信尧,王平,张宏,郭玉杰,郭飞
摘要(Abstract):
无人机是获取地表数字图像和进行样品采集的重要手段,近年来在沉积学领域正逐渐成为一种新兴的研究手段,改变着沉积学的研究范式。然而,目前国内基于无人机的沉积学研究尚处在起步阶段,本研究拟回顾近年来无人机在沉积学领域研究中的重要应用,对所涉及的关键技术背景和存在的问题进行了讨论,总结并展望了未来的发展前景,以期对后续相关研究提供参考。主要从沉积露头的三维数字重建、高分辨率沉积结构和构造特征的提取以及无人机协助样品采集3个方面综述了无人机在沉积学应用中的软硬件要求及典型研究案例。利用无人机摄影测量技术构建数字露头模型,有利于从多个空间尺度和视角观察沉积露头的几何形态、沉积相与岩相组合情况,结合数字露头模型信息提取软件,可对粒度、交错层理和生物遗迹等沉积结构和构造特征进行大范围的远程而高效的提取,未来还可进一步应用于沉积学野外实践教学工作中。此外,对无人机本身进行改造,还能够协助进行冰心等沉积物样品的采集。应用无人机技术进行沉积学研究,具有低成本和高效率的优势,保证了数据的时效性和连续性,也提高了野外工作的安全性。但是,无人机技术在数据可重复性、点云处理以及图像与模型质量方面也存在着不足。未来可借助人工智能方法,以及通过制定无人机图像采集与处理流程的标准规范来进一步改善。
关键词(KeyWords): 无人机;数字露头模型;沉积构造;粒度测量;样品采集
基金项目(Foundation): 国家自然科学基金面上项目(41572154);; 江苏省自然基金面上项目(BK20211270)
作者(Author): 孙信尧,王平,张宏,郭玉杰,郭飞
DOI: 10.19509/j.cnki.dzkq.2022.0145
参考文献(References):
- [1] Jordan B R.A bird′s-eye view of geology:The use of micro drones/UAVs in geologic fieldwork and education[J].GSA Today,2015,25(7):50-52.
- [2] Pavlis T L,Mason K A.The new world of 3D geologic mapping[J].GSA Today,2017,27(9):4-10.
- [3] Gonzaga L,Veronez M R,Alves D N,et al.MOSIS—Multi-outcrop sharing & interpretation system[C]//Anon.2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Fort Worth,TX:IEEE,2017:5209-5212.
- [4] Bellian J A,Kerans C,Jennette D C.Digital outcrop models:Applications of terrestrial scanning lidar technology in stratigraphic modeling[J].Journal of Sedimentary Research,2005,75(2):166-176.
- [5] Harrald J E G,Coe A L,Thomas R M,et al.Use of drones to analyse sedimentary successions exposed in the foreshore[J].Proceedings of the Geologists′ Association,2021,132(3):253-268.
- [6] Siebert S,Teizer J.Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system[J].Automation in Construction,2014,41:1-14.
- [7] Meek S R,Carrapa B,DeCelles P G.Recognizing allogenic controls on the stratigraphic architecture of ancient alluvial fans in the western US[J].Frontiers in Earth Science,2020,8:215.
- [8] 高莎,袁希平,甘淑,等.基于无人机成像点云的禄丰恐龙谷南缘环状地貌空间特征探测实验分析[J].地质科技通报,2021,40(6):283-292.Gao S,Yuan X P,Gan S,et al.Experimental analysis of spatial feature detection of the ring geomorphology at the south edge of Lufeng Dinosaur Valley based on UAV imaging point cloud[J].Bulletin of Geological Science and Technology,2021,40(6):283-292(in Chinese with English abstract).
- [9] Corradetti A,Tavani S,Parente M,et al.Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula,Italy):Insights from integrating field survey and digital outcrop model[J].Journal of Structural Geology,2018,108:121-136.
- [10] 孙姣姣,王琦,郑洁,等.基于DOM成果的航测软件对比分析[J].测绘与空间地理信息,2021,44(8):71-74.Sun J J,Wang Q,Zheng J,et al.Comparative analysis of aerial survey software based on DOM results[J].Geomatics & Spatial Information Technology,2021,44(8):71-74(in Chinese with English abstract).
- [11] Aliyuda K,Howell J,Usman M B,et al.Depositional variability of an ancient distributive fluvial system:The upper member of the Lower Cretaceous Bima Formation,northern Benue Trough,Nigeria[J].Journal of African Earth Sciences,2019,159:103600.
- [12] Phillips S P,Howell J A,Hartley A J,et al.Tidal estuarine deposits of the transgressive Naturita Formation (Dakota Sandstone):San Rafael Swell,Utah,U.S.A.[J].Journal of Sedimentary Research,2020,90(8):777-795.
- [13] Buckley S J,Ringdal K,Naumann N,et al.LIME:Software for 3-D visualization,interpretation,and communication of virtual geoscience models[J].Geosphere,2019,15(1):222-235.
- [14] Freitas B T,Silva L H G,Almeida R P,et al.Cross‐strata palaeocurrent analysis using virtual outcrops[J].Sedimentology,2021,68(6):2397-2421.
- [15] Romilio A,Hacker J M,Zlot R,et al.A multidisciplinary approach to digital mapping of dinosaurian tracksites in the Lower Cretaceous (Valanginian-Barremian) Broome Sandstone of the Dampier Peninsula,western Australia[J].Peer J,2017,5:e3013.
- [16] Woodget A S,Austrums R.Subaerial gravel size measurement using topographic data derived from a UAV-SfM approach:Subaerial gravel size measurement using topographic UAV-SfM data[J].Earth Surface Processes and Landforms,2017,42(9):1434-1443.
- [17] Vázquez-Tarrío D,Borgniet L,Liébault F,et al.Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River,French Alps)[J].Geomorphology,2017,285:94-105.
- [18] Smith Z D,Maxwell D J.Constructing vertical measurement logs using UAV-Based photogrammetry:Applications for multiscale high-resolution analysis of coarse-grained volcaniclastic stratigraphy[J].Journal of Volcanology and Geothermal Research,2021,409:107122.
- [19] Mori T,Hashimoto T,Terada A,et al.Volcanic plume measurements using a UAV for the 2014 Mt.Ontake eruption[J].Earth,Planets and Space,2016,68(1):1-18.
- [20] Carlson D F,Pasma J,Jacobsen M E,et al.Retrieval of ice samples using the ice drone[J].Frontiers in Earth Science,2019,7:287.
- [21] Bemis S P,Micklethwaite S,Turner D,et al.Ground-based and UAV-based photogrammetry:A multi-scale,high-resolution mapping tool for structural geology and paleoseismology[J].Journal of Structural Geology,2014,69:163-178.
- [22] 周银邦,赵淑霞,张庆新,等.露头类比方法在地下储层建模中的应用进展[J].地质科技情报,2017,36(1):247-254.Zhou Y B,Zhao S X,Zhang Q X,et al.Progress of the outcrop analogy method application in the modeling of underground reservoirs[J].Geological Science and Technology Information,2017,36(1):247-254(in Chinese with English abstract).
- [23] Pitman S J,Hart D E,Katurji M H.Application of UAV techniques to expand beach research possibilities:A case study of coarse clastic beach cusps[J].Continental Shelf Research,2019,184:44-53.
- [24] 万剑华,王朝,刘善伟,等.倾斜摄影测量构建地质数字露头[J].地质科技情报,2019,38(1):258-264.Wan J H,Wang C,Liu S W,et al.Reconstructing geological digital outcrops with oblique photogrammetry[J].Geological Science and Technology Information,2019,38(1):258-264(in Chinese with English abstract).
- [25] 吕权儒,曾斌,孟小军,等.基于无人机倾斜摄影技术的崩塌隐患早期识别及影响区划分方法[J].地质科技通报,2021,40(6):313-325.Lü Q R,Zeng B,Meng X J,et al.Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J].Bulletin of Geological Science and Technology,2021,40(6):313-325(in Chinese with English abstract).
- [26] Mezghani M M,Fallatah M I,AbuBshait A A.From drone-based remote sensing to digital outcrop modeling:Integrated workflow for quantitative outcrop interpretation[J].Journal of Remote Sensing & GIS,2018,7(2):1-7.
- [27] Nesbit P R,Durkin P R,Hugenholtz C H,et al.3-D stratigraphic mapping using a digital outcrop model derived from UAV images and structure-from-motion photogrammetry[J].Geosphere,2018,14(6):2469-2486.
- [28] Liao Y,Mohammadi M E,Wood R L.Deep learning classification of 2D orthomosaic images and 3D point clouds for post-event structural damage assessment[J].Drones,2020,4(2):24.
- [29] Khan A I,Al-Mulla Y.Unmanned aerial vehicle in the machine learning environment[J].Procedia Computer Science,2019,160:46-53.
- [30] Singh K K,Frazier A E.A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications[J].International Journal of Remote Sensing,2018,39(15/16):5078-5098.
- [31] James M R,Chandler J H,Eltner A,et al.Guidelines on the use of structure‐from‐motion photogrammetry in geomorphic research[J].Earth Surface Processes and Landforms,2019,44(10):2081-2084.