古海洋氧化还原地球化学指标研究新进展New Progress on Geochemical Indicators of Ancient Oceanic Redox Condition
张明亮,郭伟,沈俊,刘凯,周炼,冯庆来,雷勇
摘要(Abstract):
古海洋氧化还原条件的恢复一直是地学界的研究热点。许多指标可以用来指示古海洋沉积岩(物)的氧化还原条件。其中地球化学和矿物学方法历来是研究古海洋氧化还原条件的主要手段,前人工作主要集中在单个种类指标(沉积学、矿物学、地球化学等)的单方面研究,缺乏系统研究。但沉积物中的氧化还原指标受很多因素的影响,用单个指标来指示水体的氧化还原条件存在不确定性。主要通过主量元素(总有机碳TOC、有机碳和磷的摩尔比Corg∶P),氧化还原敏感的微量元素(U、V、Mo),黄铁矿类型和草莓状黄铁矿粒径分布以及同位素(黄铁矿硫同位素δ34Spyrite、钼同位素δ98 Mo、铀同位素δ238 U)等指标的综合运用来区分硫化、缺氧、次氧化以及氧化等水体条件。在硫化水体中,氧化还原敏感元素和TOC含量均大量富集,尤其是Mo的富集系数(MoEF)比U的富集系数(UEF)更大(MoEF>UEF),有机碳和磷的摩尔比(Corg∶P)也呈现高值;黄铁矿几乎全部呈草莓状,很少出现自形晶,草莓状黄铁矿平均粒径小(常小于5μm)且变化不大,δ34Spyrite值偏负,δ98 Mo值和海水同位素值接近,约为+2.3‰,δ238 U值为+0.2‰,高于海水的同位素值(-0.41‰)。水体环境为氧化的条件下,氧化还原敏感的元素和TOC的量都很缺乏,有机碳和磷的摩尔比(Corg∶P)出现低值,黄铁矿很少,且主要以自形晶的形式出现,平均粒径很大,黄铁矿中的δ34Spyrite值偏正,δ98 Mo值偏负,为-0.7‰,δ238 U值为-0.65‰。在缺氧和次氧化水体环境中,各种指标介于硫化和氧化环境之间,氧化还原敏感元素和TOC含量适中,U相对比Mo富集(UEF>MoEF),黄铁矿以草莓状为主,有部分的自形晶出现,黄铁矿平均粒径较大,而且变化范围较大,黄铁矿中的δ34Spyrite值、δ98 Mo值以及δ238 U值均介于氧化和硫化环境之间。最后,还提出在分析古海洋的氧化还原条件时,要综合考虑多种影响因素,清晰认识到每个指标的适用性和局限性,并指出了存在的问题和不足。
关键词(KeyWords): 氧化还原;草莓状黄铁矿;微量元素;U同位素;Mo同位素;S同位素;古海洋
基金项目(Foundation): 国家自然科学基金项目(41602022;41402001;41430101);; 中央高校基本科研业务费专项资金资助项目(CUG160625);; 地质过程与矿产资源国家重点实验室科技部专项经费项目(MSFGPMR10);; 中海油能源发展股份有限公司(GC2015ZC2622)
作者(Author): 张明亮,郭伟,沈俊,刘凯,周炼,冯庆来,雷勇
DOI: 10.19509/j.cnki.dzkq.2017.0412
参考文献(References):
- [1]Lithiers F,Whatley R.The use of Ostracoda to reconstruct the oxygen levels of Late Palaeozoic[J].Marine Micropaleontology,1994,24(1):57-69.
- [2]Morford J L,Emerdon S.The geochemistry of redox sensitive trace metals in sediments[J].Geochimica et Cosmochimica Acta,1999,63:1735-1750.
- [3]Thomason J,Nixon S,Croudace I W,et al.Redox-sensitive element uptake in north-east Atlantic Ocean sediment(Benthic Boundary Layer Experiment sites)[J].Earth and Planetary Science Letters,2001,184(2):535-547.
- [4]Mehay S,Keller C E,Bernasconi S M,et al.A volcanic CO2pulse triggered the Cretaceous Oceanic Anoxic Event 1aand biocalcification crisis[J].Geology,2009,37(9):819-822.
- [5]Piper D Z,Perkins R B.A modern vs.Permian black shale-the hydrography,primary productivity,and water-column chemistry of deposition[J].Chemical Geology,2004,206(3/4):177-197.
- [6]Piper D Z,Calvert S E.A marine biogeochemical perspective on black shale deposition[J].Earth-Science Reviews,2009,95(1):63-96.
- [7]Knoll A H.The early evolution of eukayotes:A geological perspective[J].Science,1992,256:622-627.
- [8]Raup D M,Sepkoski J J.Mass extinctions in the marine fossil record[J].Science,1982,215:1502-1503.
- [9]Berner R A.Sulfate reduction and the rate of deposition of marine sediments[J].Earth and Planetary Science Letters,1978,37:492-498.
- [10]Algeo T J,Ignall E.Sedimentary Corg∶P ratios,paleocean ventilation,and Phanerozoic atmospheric pO2[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,256(3):130-155.
- [11]Isozaki Y.Permo-Triassic boundary superanoxia and stratified superocean:Records from lost deep sea[J].Science,1997,276:235-238.
- [12]Bond D,Wignall P B,Racki G.Extent and duration of marine anoxia during the Frasnian Famennian(Late Devonian)mass extinction in Poland,Germany,Austria and France[J].Geological Magazine,1999,141(2):173-193.
- [13]Hammarlund E U,Dahl T W,Harper D A T,et al.A sulfidic driver for the end-Ordovician mass extinction[J].Earth and Planetary Science Letters,2012,331/332(2):128-139.
- [14]Zhou L,Wignall P B,Su J,et al.U/Mo ratios andδ98 Mo/95 Mo as local and global redox proxies during mass extinction events[J].Chemical Geology,2012,324/325:99-107.
- [15]Richoz S,van de Schootbrugge B,Pross J,et al.Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction[J].Nature Geoscience,2012,5(9):662-667.
- [16]谢树成,殷鸿福,解习农,等.地球生物学方法与海相优质烃源岩形成过程的正演和评价[J].地球科学:中国地质大学学报,2007,32(6):727-740.
- [17]腾格尔,刘文汇,徐永昌,等.缺氧环境及地球化学判别标志的探讨:以鄂尔多斯盆地为例[J].沉积学报,2004,22(2):365-371.
- [18]Harris N B.The deposition of organic-carbon-rich sedimrnts:Models,mechanisms,and consequences-introduction[C].SEPM:Special Publication,2005:1-5.
- [19]秦建中,李志明,张志荣.不同类型煤系烃源岩对油气藏形成的作用[J].石油勘探与开发,2005,32(4):131-136.
- [20]Tyson R V,Pearson T H.Modern and ancient continental shelf anoxia:An overview.Modern and ancient continental shelf anoxia[J].Arctic&Alpine Kesearch,1991,58(1):1-26.
- [21]Tribovillard N,Algeo T J,Lyons T W,et al.Application of trace metals as paleoredox and paleoproductivity proxies[J].Chemical Geology,2006,232(1/2):12-32.
- [22]Miller W.Paleobiology of complex trace fossils[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2003,192(1/4):3-14.
- [23]Bromley R G,Hanken N.Structure and function of large,lobed Zoophycos,Pliocene of Rhodes,Greece[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2003,192(1/4):79-100.
- [24]Pollard J E,Goldring R,Buck S G.Ichnofabrics containing Ophiomorpha:Significance in shallow-water facies interpretation[J].Journal of the Geological Society,1993,150(1):149-164.
- [25]Wignall P B.Black shales[M].Oxford:Oxford Science Publications,1994.
- [26]Wilkin R T,Rarnes H L,Brantley S L.The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J].Geochimica et Cosmochimica Acta,1996,60(20):3897-3912.
- [27]Wilkin R T,Arthur M A.Variations in pyrite texture,sulfur isotope composition,and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J].Geochimica et Cosmochimica Acta,2001,65(9):1399-1416.
- [28]Algeo T J,Maynard J B.Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J].Chemical Geology,2004,206(3/4):289-318.
- [29]Brumsack H J.The trace metal content of recent organic carbon-rich sediments:Implications for Cretaceous black shale formation[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2006,232(2):344-361.
- [30]常华进,储雪蕾,冯炼君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评,2009,55(1):91-99.
- [31]林治家,陈多福,刘芊.海相沉积氧化还原的地球化学识别指标[J].矿物岩石地球化学通报,2008,27(1):72-80.
- [32]金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读[J].海洋科学进展,2003,21(1):99-106.
- [33]朱祥坤,王跃,闫斌,等.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报,2013,32(6):651-688.
- [34]Algeo T J,Tribovillard N.Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J].Chemical Geology,2009,268(3):211-225.
- [35]Morford J L,Emerson S R,Breckel E J,et al.Diagenesis of oxyanions(V,U,Re,and Mo)in pore waters and sediments from a continental margin[J].Geochimica et Cosmochimica Acta,2005,69(21):5021-5032.
- [36]Morford J L,Russell A D,Emerson S.Trace metal evidence for changed in the redox environment associated with the transition from terrigenous clay to diatomaceous sediments,Saanich Inlet,BC[J].Marine Geology,2001,174(1):355-369.
- [37]Balistrieri L,Brewer P G,Murray J W.Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean[J].Deep-Sea Research,1981,28(2):101-121.
- [38]Saito C,Noriki S,Tsunogai S.Paticulate flux of Al,a component of land origin,in the western North Pacific[J].Deep-Sea Research,1992,39(7/8):1315-1327.
- [39]Walsh I,Dymond J,Collier R.Rates of recycling of biogenic components of settings particles in the ocean derived from sediment trap experiments[J].Deep-Research,1988,35(1):43-58.
- [40]Murry R W,Buchholtz Ten Brink M R,Gerlach D C,et al.Interoceanic vartation in the rare earth,major,and trace element depositional chemistry of chert:Perspectives gained from the DSDP and ODP record[J].Geochimical et Cosmochimica Acta,1992,56(5):1897-1913.
- [41]Murry R W,Leinen M.Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial pacific ocean[J].Geochimica et Cosmochimica Acta,1996,60(20):3869-3878.
- [42]Taylor S R,McLennan S M.The continental crust:Its composition and evolution[M].Oxford:Blackwell,1985.
- [43]Wedepohl K H.Environmental influences on the chemical composition of shales and clays[J].Oxford:Pergamon,1971,8(7):305-333.
- [44]Wedepohl K H.The composition of the upper earth’s crust and the natural cycles of selected metals[M].New York:John Wiley and Sons,1991.
- [45]Kryc K A,Murray R W,Murray D W.Al-to-oxide and Ti-toorganic linkages in biogenic sediment:Relationships to paleoexport production and bulk Al/Ti[J].Earth and Planrtary Science Letters,2003,211:125-141.
- [46]任景玲,张经,刘素美.以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J].地球科学进展,2005,20(12):1314-1320.
- [47]Schoepfer S D,Shen J,Wei H,et al.Total organic carbon,organic phosphorus,and biogenic barium fluxes as proxies for paleomarine productivity[J].Earth-Science Reviews,2015,149:23-52.
- [48]Anderson R F,Fleisher M Q,LeHaray A P.Concentration,oxidation state and particulate flux of uranium in the Black Sea[J].Geochimica et Cosmochimica Acta,1989,53(9):2215-2224.
- [49]Hastings D W,Emerson S R,Mix A C.Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments[J].Paleoceanography,1996,11(6):665-678.
- [50]Adelson J M,Helz G R,Miller C V.Reconstructing the rise of recent coastal anoxia:Molybdenum in Chesapeake Bay sediments[J].Geochimica Cosmochimica Acta,2001,65(2):237-252.
- [51]Vorlicek T P,Kahn M D,Kasuza Y,et al.Capture of molybdenum in pyrite-forming sediments:Role of ligand-induced reduction by polysulfides[J].Geochimica et Cosmochimica Acta,2004,68(3):547-556.
- [52]Crusius L,Calvert S,Pedersen T,et al.Rhenium and molybdenum enrichments in sediments as indicators of oxic,suboxic,and sulfidic conditions of deposition[J].Earth Planetary Science Letters,1996,145(1/4):65-78.
- [53]Zheng Y,Anderson R F,Van Geen A,et al.Authigenic molybdenum formation in marine sediments:A link to pore water sulfide in the Santa Barbara Basin[J].Geochimica et Cosmochimica Acta,2000,64(24):4165-4178.
- [54]Zheng Y,Anderson R F,Van Geen A,et al.Preservation of non-lithogenic particulate uranium in marine sediments[J].Geochimica et Cosmochimica Acta,2002,66(17):3085-3092.
- [55]McManus J,Berelson W M,Klinkhammer G P,et al.Authigenic uranium:Relationship to oxygen penetration depth and organic carbon rain[J].Geochimica et Cosmochimica Acta,2005,69(1):95-108.
- [56]Partin C A,Bekker A,Planavsky N J,et al.Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J].Earth and Planetary Science Letters,2013,369/370(3):284-293.
- [57]Scholz F,Mcmanus J,Sommer S.The manganese and iron shuttle in a modern euxinic basin and implications for molybdenum cycling at euxinic ocean margins[J].Chemical Geology,2013,355(5):56-68.
- [58]King E K,Thompson A,Hodges C,et al.Towards understanding temporal and spatial patterns of molybdenum in the critical zone[J].Procedia Earth and Planetary Science,2014,10(10):56-62.
- [59]Helz G R,Miller C V,Charnock J M,et al.Mechanisms of molybdenum removal from the sea and its concentration in black shales:Exafs evidence[J].Geochimica et Cosmochimica Acta,1996,60(19):3631-3642.
- [60]Shi L,Feng Q,Shen J,et al.Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian,South China:Evidence from the Gufeng Formation of western Hubei Province[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,444:1-14.
- [61]Shen J,Algeo T J,Feng Q,et al.Volcanically induced environmental change at the Permian-Triassic boundary(Xiakou,Hubei Province,South China):Related to West Siberian coal-field methane releases?[J].Journal of Asian Earth Sciences,2013,75(8):95-109.
- [62]Noordmann J,Weyer S,Montoya-Pino C,et al.Uranium and molybdenum isotope systematics in modern euxinic basins:Case studies from the central Baltic Sea and the Kyllaren fjord(Norway)[J].Chemical Geology,2015,396:182-195.
- [63]Pedersen T F,Calvert S E.Anoxia vs.Productivity:What controls the formation of organic-rich sediments and sedimentary rocks?[J].AAPG Bulletin,1990,74(4):454-466.
- [64]Canfield D E.Factors influencing organic carbon preservation in marine sediments[J].Chemical Geology,1994,114(3/4):315-329.
- [65]Kraal P,Slomp C P,Forster A,et al.Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,295(1/2):42-54.
- [66]Slomp C P,Thomson J,de Lange G J.Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel(S1)[J].Geochimica et Cosmochimica Acta,2002,66(7):1171-1184.
- [67]Schenau S J,De Lange G J.Phosphorus regeneration vs.burial in sediments of the Arabian Sea[J].Marine Chemistry,2001,75(3):201-217.
- [68]Slomp C P,Cappellen P.The global marine phosphorus cycle:Sensitivity to oceanic circulation[J].Biogeosciences Discussions,2006,4(2):155-171.
- [69]Anderson D M.Attenuation of millennial-scale events by bioturbation in marine sediments[J].Paleoceanography,2001,16(4):352-357.
- [70]Wignall P B,Newton R.Pyrite framboid diameter and a measure of oxygen deficiency in ancient mudrocks[J].American Journal of Science,1998,298(7):537-552.
- [71]Bond D P G,Wignall P B.Pyrite framboid study of marine Permian-Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J].GSA Bulletin,2010,122(7/8):1265-1279.
- [72]Shen J,Feng Q,Algeo T J,et al.Two pulses of oceanic environmental disturbance during the Permian-Triassic boundary crisis[J].Earth and Planetary Science Letters,2016,443:139-152.
- [73]McKay J L,Lomgstaffe F J.Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation,Western Interior Basin[J].Sedimentary Geology,2003,157(3):175-195.
- [74]Harrison A G,Thode H G.Mechanism of the bacterial reduction of sulfate from isotopic fractionation studies[J].Trans.Faraday Soc.,1958,54:84-92.
- [75]Kaplan I R,Rittenberg S C.Microbiological fractionation of sulfur isotopes[J].Journal of General Microbiclogy,1964,34:195-212.
- [76]Canfield D E,Teske A.Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphurisotope studies[J].Nature,1996,382:127-132.
- [77]Habicht K S,Canfield D E.Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J].Geochimica et Cosmochimica Acta,1997,61(24):5351-5361.
- [78]Schwarcz H P,Burnie S W.Influence of sedimentary environments on sulfur isotope ratios in clastic rocks:A review[J].Mineralium Deposita,1973,8(3):264-277.
- [79]Goldhaber M B,Kaplan I R.Controls and consequences of sulphate reduction rates in recent marine sediments[J].Soil Science,1975,119(1):42-55.
- [80]Maynard J B.Sulfur isotopes of iron sulfides in Devonian-Mississippian shales of the Appalachian Basin:Control by rate of sedimentation[J].American Journal Science,1980,280(8):772-786.
- [81]Gautier D L.Cretaceous shales from the western interior of North America:Sulfur/carbon ratios and sulfur-isotope composition[J].Geology,1986,14(3):225-228.
- [82]Li C,Love G D,Lyons T W,et al.A Stratified Redox Model for the Ediacaran Ocean[J].Science,2010,328:80-83.
- [83]Poulton S W,Canfield D E.Ferruginous conditions:A dominant feature of the ocean through earth’s history[J].Elements,2011,7:107-122.
- [84]Raiswell R,Canfield D E.Sources of iron for pyrite formation in marine sediments[J].American Journal of Science,1998,298(3):219-245.
- [85]Canfield D E,Poulton S W,Knoll A H,et al.Ferruginous conditions dominated later neoproterozoic deep-water chemistry[J].Science,2008,321:949-952.
- [86]Mrz C,Poulton S W,Beckmann B,et al.Redox sensitivity of P cycling during marine black shale formation:Dynamics of sulfidic and anoxic,non-sulfidic bottom waters[J].Geochimica et Cosmochimica Acta,2008,72(15):3703-3717.
- [87]Isley A E,Abbott D H.Plume-related mafic volcanism and the deposition of banded iron formation[J].Journal of Geophysical Research,1999,104(7):15461-15477.
- [88]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
- [89]Arnold G L,Anbar A D,Barling J,et al.Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans[J].Science,2004,304:87-90.
- [90]Poulson R L,Siebert C,Mcmanus J,et al.Authigenic molybdenum isotope signatures in marine sediments[J].Geology,2006,34(8):617-620.
- [91]Hannah J L,Stein H J,Wieser M E,et al.Molybdenum isotope variations in molybdenite:Vapor transport and Rayleigh fractionation of Mo[J].Geology,2007,35(8):703.
- [92]Barling J,Arnold G L,Anbar A D.Natural massdependent variations in the isotopic composition of molybdenum[J].Earth Planetary Science Letters,2001,193(3/4):447-457.
- [93]Wen H,Fan H,Zhang Y,et al.Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J].Geochimica et Cosmochimica Acta,2015,164:1-16.
- [94]Kurzweil F,Wille M,Schoenberg R,et al.Continuously increasingδ98 Mo values in Neoarchean black shales and iron formations from the Hamersley Basin[J].Geochimica et Cosmochimica Acta,2015,164:523-542.
- [95]Neubert N,Ngler T F,B9ttcher M E.Sulfidity controls molybdenum isotope fractionation into euxinic sediments:Evidence from the modern Black Sea[J].Geology,2008,36:775-778.
- [96]Dickson A J,Cohen A S,Coe A L.Continental margin molybdenum isotope signatures from the Early Eocene[J].Earth and Planetary Science Letters,2014,404:389-395.
- [97]Siebert C,Ngler T F,von Blanckenburg F,et al.Molybdenum isotope records as a potential new proxy for paleoceanography[J].Earth and Planetary Science Letters,2003,211(1/2):159-171.
- [98]Nakagawa Y,Takano S,Firdaus M L,et al.The molybdenum isotopic composition of the modern ocean[J].Geochem.,2012,46(2):131-141.
- [99]Ngler T F,Anbar A D,Archer C,et al.Proposal for an international molybdenum isotope measurement standard and data representation[J].Geostandards Geoanalytical Research,2014,38(2):149-151.
- [100]Barling J,Anbar A D.Molybdenum isotope fractionation during adsorption by manganese oxides[J].Earth and Planetary Science Letters,2004,217(3/4):315-329.
- [101]Wasylenki L E,Rolfe B A,Weeks C L,et al.Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides[J].Geochimica et Cosmochimica Acta,2008,72(24):5997-6005.
- [102]Brucker R L P,Mcmanus J,Severmann S,et al.Molybdenum behavior during early diagenesis:Insights from Mo isotopes[J].Geochemistry Geophysics Geosystems,2009,10(6):258-266.
- [103]Kendall B,Komiya T,Lyons T W,et al.Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period[J].Geochimica et Cosmochimica Acta,2015,156:173-193.
- [104]Dahl T W,Hammarlund E U,Anbar A D,et al.Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish[J].Proceedings of the National Academy of Sciences of the USA,2010,107(42):17911-17915.
- [105]Kendall B,Gordon G W,Poulton S W,et al.Molybdenum isotope constraints on the extent of Late Paleoproterozoic ocean euxinia[J].Earth Planetarty Science Letters,2011,307(3/4):450-460.
- [106]Zhou L,Algeo T J,Shen J,et al.Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2015,420:223-234.
- [107]Murphy M J,Stirling C H,Kaltenbach A,et al.Fractionation of 238 U/235 U by reduction during low temperature uranium mineralisation processes[J].Earth and Planetary Science Letters,2014,388(3):306-317.
- [108]Holmden C,Amini M,Francois R.Uranium isotope fractionation in Saanich Inlet:A modern analog study of a paleoredox tracer[J].Geochimica et Cosmochimica Acta,2015,153:202-215.
- [109]Langmuir D.Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J].Geochimica et Cosmochimica Acta,1978,42(6):547-569.
- [110]Ku T L,Knauss K G,Mathieu G G.Uranium in open oceanconcentration and isotopic composition[J].Deep-Sea Research,1977,24(11):1005-1017.
- [111]Tissot F L H,Dauphas N.Uranium isotopic compositions of the crust and ocean:Age corrections,U budget and global extent of modern anoxia[J].Geochimica et Cosmochimica Acta,2015,167:113-143.
- [112]Anderson R F.Redox behaviour of uranium in an anoxic marine basin[J].Uranium,1987,3:145-164.
- [113]Barnes C E,Cochran J K.Uranium removal in oceanic sediments and the oceanic-U balance[J].Earth and Planetary Sciences Letters,1990,97(1):94-101.
- [114]Klinkhammer G P,Palmer M R.Uranium in the oceans:Where it goes and why[J].Geochimica et Cosmochimica Acta,1991,55(7):1799-1806.
- [115]Fujii Y,Higuchi N,Haruno Y,et al.Temperature dependence of isotope effects in uranium chemical exchange reactions[J].Nucl.Sci.Technol.,2006,43(4):400-406.
- [116]Montoya-Pino C,Weyer S,Anbar A D,et al.Global enhancement of ocean anoxia during Oceanic Anoxic Event 2:A quantitative approach using U isotopes[J].Geology,2010,38(4):315-318.
- [117]Romaniello S J,Herrmann A D,Anbar A D.Uranium concentrations and 238 U/235 U isotope ratios in modern carbonates from the Bahamas:Assessing a novel paleoredox proxy[J].Chemical Geology,2013,362(1/4):305-316.
- [118]Weyer S,Anbar A D,Gerdes A,et al.Natural fractionation of238 U/235 U[J].Geochimica et Cosmochimica Acta,2008,72(2):345-359.
- [119]Goto K T,Anbar A D,Gordon G W,et al.Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean:Implications for the marine 238 U/235 U isotope system[J].Geochimica et Cosmochimica Acta,2014,146(1):43-58.
- [120]Andersen M B,Romaniello S,Vance D,et al.A modern framework for the interpretation of 238 U/235 U in studies of ancient ocean redox[J].Earth and Planetary Science Letters,2014,400:184-194.
- [121]Brenne