DNAPL场地污染通量升尺度预测的敏感性分析Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites
宋美钰,施小清,康学远,吴吉春
摘要(Abstract):
重非水相液体(DNAPL)污染问题日益严重。为评估DNAPL污染场地的环境风险,常采用升尺度模型推估DNAPL污染源区溶解相的质量通量(溶解通量)。由于升尺度模型中的参数较多,调查成本较高,因此需筛选模型中的关键参数,指导实际污染场地设计合理的观测数据采集方案。首先对升尺度模型中6个参数(地下水平均流速q、标准化浓度C_0/C~(eq)、离散状DNAPL质量比例GF_0、初始时刻离散状DNAPL贡献的通量比例f_g、拟合参数β_1及β_2)开展全局敏感性分析,识别其中关键参数,进而采用局部敏感性分析定量化关键参数的变化对通量预测的影响。研究结果表明,参数q、C_0/C~(eq)、GF_0和f_g对通量预测有较大影响。q和C_0/C~(eq)在整个衰减过程中敏感性均相对较高,GF_0和f_g随着衰减过程的进行,敏感性不断增高,分别在衰减中后期和后期达到峰值;对于不同结构的污染源区,q或C_0/C~(eq)增大时,通量的增幅基本不变。随着污染源区中离散状DNAPL和池状DNAPL间的质量比例(GTP)增大,GF_0或f_g增大时,其对通量预测的影响不断增大或减小。因此在预测溶解通量时需将调查成本重点应用于q和C_0/C~(eq);在合理设计污染源区修复方案时,应重点调查GF_0;在预测污染源区寿命时,f_g为重要调查对象;对于所有结构的污染源区,q和C_0/C~(eq)均为重要调查对象,对于GTP较大的污染源区,应将调查成本重点应用于GF_0,对于GTP较小的污染源区,应重点调查f_g。
关键词(KeyWords): 重非水相液体;溶解通量;升尺度模型;全局敏感性分析;局部敏感性分析
基金项目(Foundation): 国家重点研发计划项目(2018YFC1800604);; 国家自然科学基金项目(41977157)
作者(Author): 宋美钰,施小清,康学远,吴吉春
DOI: 10.19509/j.cnki.dzkq.tb20220262
参考文献(References):
- [1] 邓亚平,郑菲,施小清,等.多孔介质中DNAPLs运移行为研究进展[J].南京大学学报:自然科学版,2016,52(3):409-420.Deng Y P,Zheng F,Shi X Q,et al.Review on the transport of dense non-aqueous phase liquids in porous media[J].Journal of Nanjing University :Natural Science Edition,2016,52(3):409-420(in Chinese with English abstract).
- [2] 郑菲,高燕维,孙媛媛,等.污染源区结构特征对Tween 80去除DNAPL效果的影响[J].中国环境科学,2016,36(7):2035-2042.Zheng F,Gao Y W,Sun Y Y,et al.The influence of source-zone architecture on DNAPL removal by Tween 80 flushing[J].China Environmental Science,2016,36(7):2035-2042(in Chinese with English abstract).
- [3] 郭琼泽,张烨,姜蓓蕾,等.表面活性剂增强修复地下水中PCE的砂箱实验及模拟[J].中国环境科学,2018,38(9):3398-3405.Guo Q Z,Zhang Y,Jiang B L,et al.Experiment and numerical simulation of surfactant-enhanced aquifer remediation in PCE contaminated laboratory sandbox[J].China Environmental Science,2018,38(9):3398-3405(in Chinese with English abstract).
- [4] Stewart L D,Chambon J C,Widdowson M A,et al.Upscaled modeling of complex DNAPL dissolution[J].Journal of Contaminant Hydrology,2022,244:103920.
- [5] Koch J,Nowak W.Predicting DNAPL mass discharge and contaminated site longevity probabilities:Conceptual model and high-resolution stochastic simulation[J].Water Resources Research,2015,51(2):806-831.
- [6] Zhang S,Mao G,Crittenden J,et al.Groundwater remediation from the past to the future:A bibliometric analysis[J].WaterResearch,2017,119:114-125.
- [7] Zhu J,Sykes J F.Simple screening models of NAPL dissolution in the subsurface[J].Journal of Contaminant Hydrology,2004,72(1/4):245-258.
- [8] Parker J C,Park E.Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers[J].Water Resources Research,2004,40(5):147-158.
- [9] Falta R W,Rao P S,Basu N.Assessing the impacts of partial mass depletion in DNAPL source zones:I.Analytical modeling of source strength functions and plume response[J].Journal of Contaminant Hydrology,2005,78(4):259-280.
- [10] Zhang Z,Brusseau M L.Nonideal transport of reactive solutes in heterogeneous porous media:5.Simulating regional-scale behavior of a trichloroethene plume during pump-and-treat remediation[J].Water Resources Research,1999,35(10):2921-2935.
- [11] Karaoglu A G,Copty N K,Akyol N H,et al.Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution[J].Journal of Contaminant Hydrology,2019,225:103515.
- [12] Kueper B H,Frind E O.Two-phase flow in heterogeneous porous media:1.Model development[J].Water Resources Research,1991,27(6):1049-1057.
- [13] 郭芷琳,马瑞,张勇,等.地下水污染物在高度非均质介质中的迁移过程:机理与数值模拟综述[J].中国科学:地球科学,2021,51(11):1817-1836.Guo Z L,Ma R,Zhang Y,et al.Contaminant transport in heterogeneous aquifers:A critical review of mechanisms and numerical methods of non-Fickian dispersion[J].Science China:Earth Sciences,2021,51(11):1817-1836(in Chinese with English abstract).
- [14] 薛佩佩,文章,梁杏.地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J].地质科技通报,2022,41(1):209-222.Xue P P,Wen Z,Liang X.Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J].Bulletin of Geological Science and Technology,2022,41(1):209-222(in Chinese with English abstract).
- [15] Christ J A,Ramsburg C A,Pennell K D,et al.Predicting DNAPL mass discharge from pool-dominated source zones[J].Journal of contaminant hydrology,2010,114(1/4):18-34.
- [16] Kokkinaki A,Werth C J,Sleep B E.Comparison of upscaled models for multistage mass discharge from DNAPL source zones[J].Water Resources Research,2014,50(4):3187-3205.
- [17] Guo Z,Russo A E,DiFilippo E L,et al.Mathematical modeling of organic liquid dissolution in heterogeneous source zones[J].Journal of Contaminant Hydrology,2020,235:103716.
- [18] 宋美钰,施小清,马春龙,等.复杂DNAPL污染源区溶解相污染通量的升尺度计算[J].中国环境科学,2022,42(5):2095-2104.Song M Y,Shi X Q,Ma C L,et al.Upscaling dissolved phase mass flux for complex DNAPL source zones[J].China Environmental Science,2022,42(5):2095-2104(in Chinese with English abstract).
- [19] Li K B,Abriola L M.A multistage multicriteria spatial sampling strategy for estimating contaminant mass discharge and its uncertainty[J].Water Resources Research,2009,45:W06407.
- [20] Kang X,Shi X,Deng Y,et al.Coupled hydrogeophysical inversion of DNAPL source zone architecture and permeability fieldin a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble Kalman filtering[J].Journal of Hydrology,2018,567:149-164.
- [21] Kang X,Kokkinaki A,Kitanidis P K,et al.Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic-head,self-potential and partitioning tracer data[J].Water Resources Research,2020,56(8):e2020WR027627.
- [22] 束龙仓,王茂枚,刘瑞国,等.地下水数值模拟中的参数灵敏度分析[J].河海大学学报:自然科学版,2007,35(5):491-494.Shu L C,Wang M M,Liu R G,et al.Sensitivity analysis of parameters in numerical simulation of groundwater[J].Journal of Hohai University:Natural Science Edition,2007,35(5):491-494(in Chinese with English abstract).
- [23] 郑菲,施小清,吴吉春,等.苏北盆地盐城组咸水层CO2地质封存泄漏风险的全局敏感性分析[J].高校地质学报,2012,18(2):232-238.Zheng F,Shi X Q,Wu J C,et al.Global sensitivity analysis of leakage risk for CO2 geological sequestration in the saline aquifer of Yancheng Formation in Subei Basin[J].Geological Journal of China Universities,2012,18(2):232-238(in Chinese with English abstract).
- [24] Welter D E,White J T,Hunt R J,et al.Approaches in highly parameterized inversion:PEST++ Version 3,a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models[R].[s.l.]:US Geological Survey,2015.
- [25] Bea S A,Wainwright H,Spycher N,et al.Identifying key controls on the behavior of an acidic-U (VI) plume in the Savannah River Site using reactive transport modeling[J].Journal of Contaminant Hydrology,2013,151:34-54.
- [26] Wainwright H M,Finsterlr S.Global sensitivity and data-worth analyses in iTOUGH2:User′s guide[R].[S.l.]:Office of Scientific and Technical Information (OSTI),2016.
- [27] 杜建雯,施小清,徐红霞,等.基于iTOUGH2的生物降解模型全局敏感性时变分析[J].水文地质工程地质,2020,47(2):35-42.Du J W,Shi X Q,Xu H X,et al.Temporal variation of global sensitivity analysis for biodegradation model using iTOUGH2[J].Hydrogeology & Engineering Geology,2020,47(2):35-42(in Chinese with English abstract).
- [28] Saltelli A,Ratto M,Tarantola S,et al.Sensitivity analysis for chemical models[J].Chemical Reviews,2005,105(7):2811-2828.
- [29] Valsala R,Govindarajan S K.Co-colloidal BTEX and microbial transport in a saturated porous system:Numerical modeling and sensitivity analysis[J].Transport in Porous Media,2019,127(2):269-294.
- [30] 孙飞飞,许钦,任立良,等.水文模型参数敏感性分析概述[J].中国农村水利水电,2014(3):92-95.Sun F F,Xu Q,Ren L L,et al.An analysis of the parameters sensitivity of hydrological model[J].China Academic Journal Electronic Publishing House,2014(3):92-95(in Chinese with English abstract).
- [31] 王上上,陈富,李东贤,等.锚杆不确定性对加固边坡失稳概率的影响[J].地质科技通报,2022,41(2):282-289.Wang S S,Chen F,Li D X,et al.Influence of anchor uncertainty on the failure probability of reinforced slope[J].Bulletin of Geological Science and Technology,2022,41(2):282-289(in Chinese with English abstract).
- [32] Hill M C,Tiedeman C R.Effective groundwater model calibration:With analysis of data,sensitivities,predictions,and uncertainty[M].New York:John Wiley & Sons,2006.
- [33] McKay M D.Evaluating prediction uncertainty[R].[S.l.]:Nuclear Regulatory Commission,1995.
- [34] Rajabi M M,Ataie-Ashtiani B,Janssen H.Efficiency enhancement of optimized Latin hypercube sampling strategies:Application to Monte Carlo uncertainty analysis and meta-modeling[J].Advances in Water Resources,2015,76:127-139.
- [35] 地下水质量标准:GB14848-2017[S].北京:中国标准出版社,2017.Quality standard in groundwater:GB14848-2017[S].Beijing:Standards Press of China,2017.
- [36] 于青春,万力,靳孟贵,等.水文地质学基础[M].北京:地质出版社,2011.Yu Q C,Wan L,Jin M G,et al.Foundation of hydrogeology[M].Beijing:Geological Publishing House,2011(in Chinese).
- [37] Park E,Parker J C.Evaluation of an upscaled model for DNAPL dissolution kinetics in heterogeneous aquifers[J].Advances in Water Resources,2005,28(12):1280-1291.