青藏高原挠曲均衡重力异常特征及其地质意义Characteristics of flexural isostatic gravity anomalies in the Tibetan Plateau and its geological significances
张星宇,杜劲松,陈超,梁青
摘要(Abstract):
自新生代印度板块的块持续碰撞与俯冲作用下,青藏高原经历了快速隆升与复杂的岩石圈改造过程,但高原现今的垂向动力学机制和地壳形变特征仍然存在争议。基于非均一有效弹性厚度的挠曲模型,利用地形和地球重力场模型数据,计算了青藏高原及邻区的挠曲均衡重力异常。结果显示,青藏高原的均衡重力异常在-120~90 mGal之间,高原中部为明显的正异常特征,边缘为显著的均衡负异常。极小值出现在青藏高原西北部及其相邻的帕米尔高原,极大值则出现在与之紧邻的喜马拉雅块体西北部。此外,在青藏高原北面和东面,塔里木盆地和四川盆地显示出大片的均衡正异常。这些特征说明青藏高原及邻区地壳现今处于非均衡的状态,在板块碰撞挤压作用下,老的块体地壳整体发生抬升,导致了均衡正异常特征;而年轻的造山区域,地壳形变主要表现为地表抬升与下地壳强烈增厚,形成了均衡负异常。在高原中部和北部,均衡调整方向与地壳垂向运动趋势相一致;但在高原南面(喜马拉雅块体)和东面(四川盆地),均衡调整方向与地表形变观测结果相反。这说明印度板块碰撞与俯冲仍然控制着青藏高原南部、东部及其相邻块体的地壳形变过程,然而在更北的区域,地壳正通过均衡调整恢复均衡状态。
关键词(KeyWords): 青藏高原;弹性板;挠曲均衡;均衡重力异常;地质意义
基金项目(Foundation): 国家自然科学基金项目(41774091;42174090);; 地质过程与矿产资源国家重点实验室科技部专项(MSFGPMR2022-4)
作者(Author): 张星宇,杜劲松,陈超,梁青
DOI: 10.19509/j.cnki.dzkq.tb20220621
参考文献(References):
- [1] Leech M L,Singh S,Jain A,et al.The onset of India-Asia continental collision:Early,steep subduction required by the timing of UHP metamorphism in the western Himalaya[J].Earth and Planetary Science Letters,2005,234:83-97.
- [2] Willett S D,Beaumont C.Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J].Nature,1994,369:642-645.
- [3] Yin A,Harrison T M.Geologic evolution of the Himalayan-Tibetan orogen[J].Annual Review of Earth and Planetary Sciences,2000,28(1):211-280.
- [4] Gao R,Lu Z W,Klemperer S L,et al.Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J].Nature Geoscience,2016,9:555-560.
- [5] 赵帅,解习农,刘中戎,等.古地貌对断陷盆地沉积体系的控制作用:以青藏高原伦坡拉盆地始新统牛堡组为例[J].地质科技通报,2019,38(2):53-64.Zhao S,Xie X N,Liu Z R,et al.Control of tectonic-paleogeomorphology on deposition system of faulting-subsiding basin:A case from the Eocene Niubao Formation in Lunpola Basin,Central Tibet[J].Bulletin of Geological Science and Technology,2019,38(2):53-64(in Chinese with English abstract).
- [6] 李秋生,高原,王旭本,等.青藏高原地球物理与大陆动力学研究的新进展[J].地球物理学报,2020,63(3):789-801.Li Q S,Gao Y,Wang X B,et al.New research progress in geophysics and continental dynamics of the Tibetan Plateau[J].Chinese Journal of Geophysics,2020,63(3):789-801(in Chinese with English abstract).
- [7] Shin Y H,Shum C K,Braitenberg C,et al.Moho topography,ranges and folds of Tibet by analysis of global gravity models and GOCE data[J].Scientific Reports,2015,5:11681.
- [8] Xu C,Liu Z W,Luo Z C,et al.Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J].Journal of Asian Earth Sciences,2017,138:378-386.
- [9] Chen W,Tenzer R.Moho modeling in spatial domain:A case study under Tibet[J].Advances in Space Research,2017,59(12):2855-2869.
- [10] Baranov A,Bagherbandi M,Tenzer R.Combined gravimetric-seismic Moho model of Tibet[J].Geosciences,2018,8(12):461.
- [11] Zhao G,Liu J,Chen B,et al.Moho beneath Tibet based on a joint analysis of gravity and seismic data[J].Geochemistry,Geophysics,Geosystems,2020,21:e2019GC008849.
- [12] Wang Q,Zhang P Z,Freymueller J,et al.Present day crustal deformation in China constrained by global positioning system (GPS) measurements[J].Science,2001,294:574-577.
- [13] 王伟,王迪晋,陈正松,等.用GPS资料分析青藏高原现今应变率场[J].大地测量与地球动力学,2017,37(9):881-883.Wang W,Wang D J,Chen Z S,et al.Present-day strain rate field of Tibetan Plateau analyzed by GPS measurements[J].Journal of Geodesy and Geodynamics,2017,37(9):881-883(in Chinese with English abstract).
- [14] Pan Y J,Shen W B,Shum C K,et al.Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data[J].Earth and Planetary Science Letters,2018,502:12-22.
- [15] Pan Y J,Hammond W C,Ding H,et al.GPS imaging of vertical bedrock displacements:Quantification of two-dimensional vertical crustal deformation in China[J].Journal of Geophysical Research,2021,126:e2020JB020951.
- [16] 陈石,王谦身.蒙古及周边地区重力异常和地壳不均匀体分布[J].地球物理学报,2015,58(1):79-91.Chen S,Wang Q S.Gravity anomalies and the distributions of inhomogeneous masses in the crust of Mongolia and its surrounding regions[J].Chinese Journal of Geophysics,2015,58(1):79-91(in Chinese with English abstract).
- [17] 吴开彬,曾广乾,陈国雄,等.布格重力异常揭示的贵州深部构造特征[J].地质科技通报,2016,35(1):190-199.Wu K B,Zeng G Q,Chen G X,et al.Deep structural features of Guizhou revealed by Bouguer gravity anomaly[J].Bulletin of Geological Science and Technology,2016,35(1):190-199(in Chinese with English abstract).
- [18] 杨文采,瞿辰,侯遵泽,等.中国大陆克拉通地体地壳密度结构特征[J].地质论评,2017,63(4):843-853.Yang W C,Qu C,Hou Z Z,et al.Crustal density structures of craton terrains in continent of China[J].Geological Review,2017,63(4):843-853(in Chinese with English abstract).
- [19] 单斌,周万里.岩石圈结构成像方法的进展与展望[J].地质科技通报,2022,41(5):112-121.Shan B,Zhou W L.Methods and prospects for lithospheric structure imaging[J].Bulletin of Geological Science and Technology,2022,41(5):112-121(in Chinese with English abstract).
- [20] Kaban M K,Khrepy S E,Al-Arifi N.Isostatic model and isostatic gravity anomalies of the Arabian Plate and surroundings[J].Pure & Applied Geophysics,2016,173(4):1211-1221.
- [21] Kaban M K,Schwintzer P,Tikhotsky S A.A global isostatic gravity model of the Earth[J].Geophysical Journal International,1999,136(3):519-536.
- [22] 陈石,王谦身,祝意青,等.青藏高原东缘重力导纳模型均衡异常时空特征[J].地球物理学报,2011,54(1):22-34.Chen S,Wang Q S,Zhu Y Q,et al.Temporal and spatial features of isostasy anomaly using gravitational admittance model at eastern margin of Tibetan Plateau[J].Chinese Journal of Geophysics,2011,54(1):22-34(in Chinese with English abstract).
- [23] 张星宇,陈超,杜劲松,等.天山及邻区Vening Meinesz均衡重力异常特征及其动力学意义[J].地球物理学报,2020,63(10):3791-3803.Zhang X Y,Chen C,Du J S,et al.Characteristics of Vening Meinesz isostatic gravity anomalies in Tien Shan and surroundings and its dynamic significances[J].Chinese Journal of Geophysics,2020,63(10):3791-3803(in Chinese with English abstract).
- [24] Kirby J F.On the pitfalls of Airy isostasy and the isostatic gravity anomaly in general[J].Geophysical Journal International,2019,216:103-122.
- [25] Simpson R W,Jachens R C,Blakely R J,et al.A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies[J].Journal of Geophysical Research,1986,91(B8):8348-8372.
- [26] Ussami N,de Sá N C,Molina E C.Gravity map of Brazil:2.Regional and residual isostatic anomalies and their correlation with major tectonic provinces[J].Journal of Geophysical Research,1993,98(B2):2199-2208.
- [27] Watts A B,Moore J D P.Flexural isostasy:Constraints from gravity and topography power spectra[J].Journal of Geophysical Research,2017,122:8417-8430.
- [28] Audet P,Bürgmann R.Dominant role of tectonic inheritance in supercontinent cycles[J].Nature Geoscience,2011,4:184-187.
- [29] Tesauro M,Audet P,Kaban M K,et al.The effective elastic thickness of the continental lithosphere:Comparison between rheological and inverse approaches[J].Geochemistry Geophysics Geosystems,2012,13:Q09001.
- [30] Kaban M K,Delvaux D,Maddaloni F,et al.Thickness of sediments in the Congo Basin based on the analysis of decompensative gravity anomalies[J].Journal of African Earth Sciences,2021,179:104201.
- [31] Kaban M K,Gvishiani A,Sidorov R,et al.Structure and density of sedimentary basins in the southern part of the East-European Platform and surrounding area[J].Applied Sciences,2021,11(2):512.
- [32] 许志琴,杨经绥,李海兵,等.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社,2007.Xu Z Q,Yang J S,Li H B,et al.Orogenic plateau:Terrane ammalgatation,collisional orogeny and uplifting of the Qinghai-Tibet Plateau[M].Beijing:Geological Publishing House,2007(in Chinese with English abstract).
- [33] Amante C,Eakins B W.ETOPO1 1 arc-minute global relief model:Procedures,data sources and analysis[C]//Anon.NOAA Technical Memorandum NESDIS NGDC-24,National Geophysical Data Center,NOAA.[S.l.]:[s.n.],2009:1-9.
- [34] Pandey S,Yuan X,Debayle E,et al.A 3D shear-wave velocity model of the upper mantle beneath China and the surrounding areas[J].Tectonophysics,2014,633:193-210.
- [35] 李廷栋.青藏高原隆升的过程和机制[J].地球学报,1995,34(1):1-9.Li T D.The uplifting process and mechanism of the Qinghai-Tibet Plateau[J].Acta Geoscientia Sinica,1995,34(1):1-9(in Chinese with English abstract).
- [36] Tapponnier P,Xu Z Q,Roger F,et al.Oblique stepwise rise and growth of the Tibet Plateau[J].Science,2001,294:1671-1677.
- [37] Royden L H,Burchfiel B C,van der Hilst R D.The geological evolution of the Tibetan Plateau[J].Science,2008,321:1054-1058.
- [38] Airy G B.On the computations of the effect of the attraction of the mountain-masses,as disturbing the apparent astronomical latitude of stations in geodetic surveys[J].Philosophical Transactions of the Royal Society of London,1855,145:101-104.
- [39] Pratt J H.On the attraction of the Himalaya Mountains,and of the elevated regions beyond them,upon the plumb-line in India[J].Philosophical Transactions of the Royal Society of London,1855,145:53-100.
- [40] Vening Meinesz F A.Une nouvelle méthode pour la réduction isostatique régionale de l′intensité de la pesanteur[J].Bulletin Géodésique,1931,29:33-51.
- [41] Stark C P,Stewart J,Ebinger C J.Wavelet transform mapping of effective elastic thickness and plate loading:Validation using synthetic data and application to the study of southern African tectonics[J].Journal of Geophysical Research,2003,108 (B12):2558.
- [42] Kirby J F,Swain C J.An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation[J].Geochemistry,Geophysics,Geosystems,2008,9(3):Q03022.
- [43] Sj?berg L E.Solving Vening Meinesz-Moritz inverse problem in isostasy[J].Geophysical Journal International,2009,179(3):1527-1536.
- [44] F?rste C,Bruinsma S L,Abrikosov O,et al.EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse[C]//Anon.EGU General Assembly Conference Abstracts.[S.l.]:[s.n.],2014:3707.
- [45] Parker R L.The rapid calculation of potential anomalies[J].Geophysical Journal International,1973,31(4):447-455.
- [46] Kirby J F,Swain C J.A reassessment of spectral Te estimation in continental interiors:The case of North America[J].Journal of Geophysical Research,2009,114(B8):B08401.
- [47] Kirby J F,Swain C J.Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform[J].Computers & Geosciences,2011,37(9):1345-1354.
- [48] Chen B,Chen C,Kaban M K,et al.Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics[J].Earth and Planetary Science Letters,2013,363:61-72.
- [49] Jordan T A,Watts A B.Gravity anomalies,flexure and the elastic thickness structure of the India-Eurasia collisional system[J] Earth and Planetary Science Letters,2005,236(3/4):732-750.
- [50] Wienecke S,Braitenberg C,G?tze H J.A new analytical solution estimating the flexural rigidity in the Central Andes[J].Geophysical Journal International,2007,169(3):789-794.
- [51] Li Y,Yang Y.Isostatic state and crustal structure of North China Craton derived from GOCE gravity data[J].Tectonophysics,2020,786:228475.
- [52] Stolk W,Kaban M,Beekman F,et al.High resolution regional crustal models from irregularly distributed data:Application to Asia and adjacent areas[J].Tectonophysics,2013,602:55-68.
- [53] Laske G,Masters G,Ma Z T,et al.Update on CRUST1.0-a 1-degree global model of earth′s crust[C]//Anon.EGU General Assembly Conference Abstracts.Vienna,Austria:[s.n.],2013:2658.
- [54] Watts A B.Isostasy and flexure of the lithosphere[M].Cambridge:Cambridge University Press,2001.
- [55] Ge W P,Molnar P,Shen Z K,et al.Present-day crustal thinning in the and northern Tibetan Plateau revealed by GPS measurements[J].Geophysical Research Letters,2015,42:5227-5235.
- [56] Molnar P,Tapponnier P.Active tectonics of Tibet[J].Journal of Geophysical Research,1978,83:5361-5375.
- [57] Bao X W,Song X D,Li J T.High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J].Earth and Planetary Science Letters,2015,417:132-141.
- [58] Xin H L,Zhang H J,Kang M,et al.High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J].Seismological Research Letters,2018,90(1):229-241.
- [59] Rui X,Stamps D S.A geodetic strain rate and tectonic velocity model for China[J].Geochemistry,Geophysics,Geosystems,2019,20:1280-1297.
- [60] Wang C S,Zhao X X,Liu Z F,et al.Constraints on the early uplift history of the Tibetan Plateau[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(13):4987-4992.
- [61] Bao X W,Song X D,Eaton D W,et al.Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J].Geophysical Research Letters,2020,47:e2019GL085721.
- [62] Yuan X H,Ni J,Kind R,et al.Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J].Journal of Geophysical Research,1997,102:27491-27500.
- [63] Kind R,Yuan X H,Saul J,et al.Seismic images of crust and upper mantle beneath Tibet:Evidence for Eurasian plate subduction[J].Science,2002,298:1219-1221.
- [64] Nabelek J,Hetenyi G,Vergne J,et al.Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J].Science,2009,325:1371-1374.
- [65] 赵俊猛,张培震,张先康,等.中国西部壳幔结构与动力学过程及其对资源环境的制约:“羚羊计划”研究进展[J].地学前缘,2021,28(5):230-259.Zhao J M,Zhang P Z,Zhang X K,et al.Crust-mantle structure and geodymanics processes in western China and their constraints on resources and enviroment:Research progress of the ANTILOPE Project[J].Earth Science Frontiers,2021,28(5):230-259(in Chinese with English abstract).
- [66] Wittlinger G,Vergne J,Tapponnier P,et al.Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J].Earth and Planetary Science Letters,2004,221(1/4):117-130.
- [67] Zhao J M,Yuan X H,Liu H B,et al.The boundary between the Indian and Asian tectonic plates below Tibet[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(25):11229-11233.
- [68] Zhang Z J,Yuan X H,Yun C,et al.Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin[J].Earth and Planetary Science Letters,2010,292(3/4):254-264.