印度尼西亚戴里Sedex型铅锌矿集区成矿流体特征及成矿物质来源:流体包裹体及同位素地球化学证据Characteristics of mineralization fluids and mineralization material sources of the Sedex-type Dairi Pb-Zn ore concentration area in Indonesia: Evidence from fluid inclusions and isotopic geochemistry
张海坤;胡鹏;曹亮;程湘;战明国;潘罗忠;戴昱;潘贝红;
摘要(Abstract):
戴里铅锌矿集区位于印度尼西亚苏门答腊岛西北部,是一个主要产于页岩、具有巨型规模的Sedex型铅锌矿。通过系统的流体包裹体测试及H、O、S、Pb等同位素分析,以对其成因进行约束。分析结果表明:①戴里铅锌矿流体包裹体均一温度范围为189~315℃,峰值为220~240℃;②δD_(V-SMOW)值范围为-68.7‰~-76.4‰,平均为-72.9‰,δ~(18)O_(V-SMOW)值范围为+5.9‰~+19.5‰,平均为+16.6‰;③黄铁矿δ~(34)S_(CDT)值为正值,集中分布在+25.49‰~+26.36‰之间;④铅同位素显示较高的μ值(9.92~10.17,平均值为10.04)和ω值(38.06~40.51,平均值为39.26)。该矿床成矿流体温度为中温(220~240℃),成矿流体可能以岩浆水为主,有少量浅源水的加入,硫、铅均为单一来源,其中硫主要来自海水,铅来源于上地壳。
关键词(KeyWords): 印度尼西亚;戴里铅锌矿集区;Sedex型;流体包裹体;硫铅同位素
基金项目(Foundation): 中国地质调查局地质调查项目“印度尼西亚苏门答腊岛铜多金属资源潜力评价”(DD20160114);; 广西壮族自治区地质矿产勘查开发局地质勘查基金项目“广西与东盟特提斯构造过程与大规模成矿作用对比研究”(桂地矿外任[2018]1号)
作者(Author): 张海坤;胡鹏;曹亮;程湘;战明国;潘罗忠;戴昱;潘贝红;
Email:
DOI: 10.19509/j.cnki.dzkq.2020.0318
参考文献(References):
- [1] 刘继顺.印尼Dairi巨型铅锌富矿发现与勘探历程[EB/OL].(2017-6-28)[2019-4-10]http://blog.sina.com.cn/s /blog_4931d5820102wxy6.html.
- [2] Hall R.Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:Computer-based reconstructions,model and animations[J].Journal of Asian Earth Sciences,2002,20(4):353-431.
- [3] Metcalfe I.Tectonic framework and Phanerozoic evolution of Sundaland[J].Gondwana Research,2011,19(1):3-21.
- [4] Yin A.Cenozoic tectonic evolution of Asia:A preliminary synthesis[J].Tectonophysics,2010,488(1/4):293-325.
- [5] Whittaker J M,Müller R D,Sdrolias M,et al.Sunda-Java trench kinematics,slab window formation and overriding plate deformation since the Cretaceous[J].Earth and Planetary Science Letters,2007,255(3/4):445-457.
- [6] Barber A J.The origin of the Woyla Terranes in Sumatra and the Late Mesozoic evolution of the Sundaland margin[J].Asian Earth Sciences,2000,18(6):713-738.
- [7] Baber A J,Crow M J.Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys[J].Island Arc,2009,18(1):3-20.
- [8] Metcalfe I.Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J].Journal of Asian Earth Sciences,2013,66:1-33.
- [9] Ueno K.The Permian fusulinoidean faunas of the Sibumasu and Baoshan blocks:Their implications for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian Continent[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2003,193(1):1-24.
- [10] Hutchison C S.Gondwana and Cathaysian blocks,Palaeotethys suture and Cenozoic tectonics in South-East Asia[J].Geoloische Rundshau,1994,82:388-405.
- [11] McCarroll R J,Graham I T,Fountain R,et al.The Ojolali region,Sumatra,Indonesia:Epithermal gold-silver mineralisation within the Sunda Arc[J].Gondwana Research,2014,26(1):218-240.
- [12] Hall R.Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J].Tectonophysics,2012,570/571:1-41.
- [13] Fernández-Blanco D,Philippon M,von Hagke C.Structure and kinematics of the Sumatran Fault System in North Sumatra (Indonesia)[J].Tectonophysics,2016,693:453-464.
- [14] Clayton R N,Rex R W,Syers J K,et al.Oxygen isotope abundance in quartz from Pacific pelagic sediments.Journal of Geophysical Research,1972,77(21):3907-3915.
- [15] 张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,1985.
- [16] Samson I M,Russell M J.Genesis of the Silvermines zinc-lead-barite deposit,Ireland:Fluid inclusion and stable isotope evidence[J].Economic Geology,1987,82:371-394.
- [17] Greig J A,Baadsgaard H,Cumming G L,et al.Fluid inclusion data from carbonate hosted Irish base metal deposits (abstract)[M].Manchester:Mineral Deposits Studies Group Mtg,1983.
- [18] 王莉娟,祝新友,王京斌,等.青海锡铁山铅锌矿床喷流沉积系统(SEDEX)成矿流体研究[J].岩石学报,2008,24(10):2433-2440.
- [19] 韩发,孙海田.Sedex型矿床成矿系统[J].地学前缘,1999,6(1):139-162.
- [20] 卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.
- [21] 张德会.矿物流体包裹体液相成分特征及其矿床成因意义[J].地球科学:中国地质大学学报,1992,17(6):677-688.
- [22] 于皓丞,邱昆峰,孙志佳,等.新疆阿合奇地区色帕巴衣铅矿床成因:地质、地球化学研究的启示[J].地质科技情报,2017,36(2):20-28.
- [23] 杨钻云,邱仁轩,秦术凯,等.川西龙门山地区元古代 VMS 铜矿床 :硫化物微量元素和硫同位素证据[J].地质科技情报,2009,28(4):59-64.
- [24] 郎兴海,邓煜霖,王旭辉,等.西藏雄村矿区Ⅲ号矿体硫、铅同位素特征及成矿物质来源[J].地质科技情报,2018,37(4):1-9.
- [25] 徐书奎.豫西寺家沟金矿床氢氧硫同位素特征及地质意义[J].地质科技情报,2017,36(5):143-147.
- [26] 李振红,赵亚辉,周厚祥.硫同位素地质特征及其在湖南省铜矿床成矿物质来源示踪中的应用[J].华南地质与矿产,2018,34(1):72-77.
- [27] Ohmoto H,Rye R D.Isotopes of sulfur and carbon[C]//Barnes H L.Geochemistry of hydrothermal ore deposits.New York:Wiley,1979.
- [28] 朱炳泉.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].北京:科学出版社,1998.
- [29] Chang X Y,Zhu B Q,Yu S Y,et al.Application of lead isotopes to geochemical exploration of gold deposits in Baoban,Hainan Province,China[J].Chinese Journal of Geochemistry,2003,22(3):244-252.
- [30] 李红梅.河南桐柏围山城金银成矿带成矿物质来源:铅同位素证据[J].地质与勘探,2009,45(4):374-384.
- [31] 马圣钞.青海虎头崖铜铅锌多金属矿床硫、铅同位素组成及成因意义[J].地质与勘探,2012,48(2):321-331.
- [32] 谭洪旗.四川乌依铅矿床成矿物质来源:硫、铅同位素和方铅矿稀土元素地球化学制约[J].地质与勘探,2017,53(6):1051-1060.
- [33] Zartman R E,Doe B R.Plumbotectonics-the model[J].Tectonophysic,1981,75(12):135-162.
- [34] 吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,2002,30(2):73-81.