腐殖酸对微生物还原绿脱石结构Fe(Ⅲ)的促进作用Enhancement of Microbial Reduction of Structural Fe(Ⅲ)in Nontronite by Humic Acid
张千帆;曾强;刘邓;王红梅;
摘要(Abstract):
微生物介导的铁循环是调控地表有害物质迁移转化等地球化学反应的关键因子之一。为了探明腐殖酸对微生物还原含铁黏土矿物的影响,选取了富铁黏土矿物绿脱石和不同土壤中提取到的腐殖酸为研究对象进行了实验,在有、无腐殖酸2种条件下对比了典型异化铁还原菌Shewanella putrefaciens CN32对绿脱石结构Fe(Ⅲ)的还原效率,同时分析了微生物作用后绿脱石的晶体结构差异。实验采用化学方法检测Fe(Ⅲ)的还原程度,利用X射线粉晶衍射(XRD)及傅里叶转换红外光谱(FT-IR)对微生物作用前后的绿脱石进行了矿物学表征,利用扫描电镜(SEM)研究了反应前后绿脱石的形貌差异。实验结果表明不同来源的腐殖酸均具有促进微生物还原绿脱石结构Fe(Ⅲ)的能力,但其促进效率存在差异。绿脱石中的结构Fe(Ⅲ)经微生物还原后,其矿物结构被破坏,结晶程度逐渐降低,矿物形貌由不规则片状变为松散疏松的网絮状。本研究对深入理解自然环境中铁的生物地球化学循环及其环境效应具有启示意义。
关键词(KeyWords): 腐殖酸;Shewanella putrefaciens CN32;铁还原;黏土矿物;电子穿梭体
基金项目(Foundation): 国家自然科学基金项目(41302270)
作者(Author): 张千帆;曾强;刘邓;王红梅;
Email:
DOI:
参考文献(References):
- [1]Shelobolina E S,Anderson R T,Vodyanitskii Y N,et al.Importance of clay size minerals for Fe(Ⅲ)respiration in a petroleum-contaminated aquifer[J].Geobiology,2004,2(1):67-76.
- [2]Amstaetter K,Borch T,Larese-Casanova P,et al.Redox transformation of arsenic by Fe(Ⅱ)-activated goethite(α-FeOOH)[J].Environmental Science&Technology,2010,10(12):102-108.
- [3]Lalonde K,Mucci A,Ouellet A,et al.Preservation of organic matter in sediments promoted by iron[J].Nature,2012,483:198-200.
- [4]Roden E,Edmonds J,Coates J D,et al.Phosphate mobilization in iron-rich anaerobic sediments:Microbial Fe(Ⅲ)oxide reduction versus iron-sulfide formation[J].Archiv für Hydrobiologie,1997,139(3):347-378.
- [5]王红梅,刘烁,刘邓,等.硫酸盐还原菌及异化铁还原菌对黄钾铁矾还原作用的对比[J].地球科学:中国地质大学学报,2015,40(2):305-316.
- [6]Weber K A,Achenbach L A,Coates J D,et al.Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J].Nature Reviews Microbiology,2006,4(10):752-764.
- [7]谢树成,杨欢,罗根明,等.地质微生物功能群:生命与环境相互作用的重要突破口[J].科学通报,2012,57(1):3-22.
- [8]Fredrickson J K,Gorby Y A.Environmental processes mediated by iron-reducing bacteria[J].Current Opinion Biotechnology,1996,7(3):287-294.
- [9]Dong H.Clay-microbe interactions and implications for environmental mitigation[J].Elements,2012,8(2):113-118.
- [10]Lee J H,Fredrickson J K,Kukkadapu R K,et al.Microbial reductive transformation of phyllosilicate Fe(Ⅲ)and U(VI)in fluvial subsurface sediments[J].Environmental Science&Technology,2012,46(7):3721-3730.
- [11]Stucki J W.A review of the effects of iron redox cycles on smectite properties[J].Computes Rendus Geoscience,2011,343(2):199-209.
- [12]Vodyanitskii Y N.Reductive biogenic transformation of Fe(Ⅲ)-containing phyllosilicates(review of publications)[J].Eurasian Soil Science,2007,40(12):1355-1363.
- [13]Konhauser K O,Kappler A,Roden E E,et al.Iron in microbial metabolisms[J].Elements,2011,7(2):89-93.
- [14]Reguera G,McCarthy K D,Mehta T,et al.Extracellular electron transfer via microbial nanowires[J].Nature,2005,435:1098-1101.
- [15]Gorby Y A,Yanina S,McLean J S,et al.Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1and other microorganisms[J].Proceedings of the National Academy of Sciences,2006,103(30):11358-11363.
- [16]Lovley D R,Holmes D E,Nevin K P,et al.Dissimilatory Fe(Ⅲ)and Mn(IV)reduction[J].Advances in Microbial Physiology,2004,49(2):219-286.
- [17]Lovley D R,Coates J D,Blunt-Harris E L,et al.Humic substances as electron acceptors for microbial respiration[J].Nature,1996,382:445-448.
- [18]Lovley D R,Fraga J L,Blunt-Harris E L,et al.Humic substances as a mediator for microbially catalyzed metal reduction[J].Acta Hydrochimica et Hydrobiologica,1998,26(3):152-157.
- [19]Lovley D R,Blunt-Harris E L.Role of humics-bound iron as an electron transfes agent in dissimilatory Fe(Ⅲ)reduction[J].Applied and Environmental Microbiology,1999,65(9):4252-4254.
- [20]Kappler A,Marcus B,Bernhard S,et al.Electron shuttling via humic acids in microbial iron(Ⅲ)reduction in a freshwater sediment[J].FEMS Microbiology Ecology,2004,47(1):85-92.
- [21]Sudo T,Eberhart J P.Electron micrographs of clay minerals[J].Elsevier Science,1981,18(2):31.
- [22]赵杏媛,张有瑜.黏土矿物与黏土矿物分析[M].北京:海洋出版社,1990.
- [23]Dong H,Jaisi D P,Kim J,et al.Microbe-clay mineral interactions[J].American Mineralogist,2009,94(11/12):1505-1519.
- [24]曹维政,朱云,鲁安怀,等.两株异化铁还原菌与蒙脱石交互作用实验研究[J].矿物岩石地球化学通报,2011,30(3):311-316.
- [25]Scott D T,McKnight D M,Blunt-Harris E L,et al.Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J].Environmental Science&Technology,1998,32(19):327-372.
- [26]Amstaetter K,Bortch T,Kappler A,et al.Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(Ⅲ)reduction[J].Geochimica et Cosmochimica Acta,2012,85(2):326-341.
- [27]Zhang C,Zhang D,Xiao Z,et al.Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol[J].Chemosphere,2015,131(4):110-116.
- [28]Liu D,Dong H,Zhao L,et al.Smectite redution by Shewanella species as facilitated by cystine and cysteine[J].Geomicrobiology Journal,2014,31:53-63.
- [29]汪丹,董海良.微生物对绿脱石中有机质利用的研究[J].矿物岩石地球化学通报,2015,34(2):301-309.
- [30]Jaisi D P,Kukkadapu R K,Eberl D D,et al.Control of Fe(Ⅲ)site occupancy on the rate and extent of microbial reduction of Fe(Ⅲ)in nontronite[J].Geochimica et Cosmochimica Acta,2005,69(23):5429-5440.
- [31]Jaisi D P,Dong H,Liu C,et al.Influence of biogenic Fe(Ⅱ)on the extent of microbial reduction of Fe(Ⅲ)in clay minerals nontronite,illite and chlorite[J].Geochimica et Cosmochimica Acta,2007,71(5):1145-1158.
- [32]Liu D,Dong H,Bishop M E,et al.Reduction of structural Fe(Ⅲ)in nontronite by methanogen Methanosarcina barkeri[J].Geochimica et Cosmochimica Acta,2011,75(4):1057-1071.
- [33]Liu D,Wang H M,Dong H L,et al.Mineral transformations associated with goethite reduction by Methanosarcina barkeri[J].Chemical Geology,2011,288(1/2):53-60.
- [34]Liu D,Wang H M,Qiu X,et al.Comparison of Re-duction extent of Fe(Ⅲ)in Nontronite by Shewanella putrefaciens and Desulfovibrio vulgaris[J].Journal of Earth Science,2010,21(Special Issue):297-299.
- [35]Chai X,Shmaoka T,Qiang G,et al.Characterization of humic and fulvic acids extracted from landfill by elemental composition 13C CP/MAS NMR and TMAH-Py-GC/MS[J].Waste Management,2008,28(5):896-903.
- [36]Fong S S,Mohamed M.Chemical characterization of humic substances occurring in the peats of Sarawak,Malaysia[J].Organic Geochemistry,2007,38(6):967-976.
- [37]Geyera W,Hemidia F,Bruggemanna A H,et al.Investigation of soil humic substances from different enviromenrs using TGFTIR and multivariate data analysis[J].Thermochimica Acta,2000,361(1/2):139-146.
- [38]Lu X Q,Hanna J V,Johnson W D,et al.Source indicators of humic substances:An elemental composition,solid state 13C CP/MAS NMR and Py-GC/MS study[J].Applied Geochemistry,2000,15(7):1019-1033.
- [39]Thomsen M,Lassen P,Dobel S,et al.Characterisation of humic materials of different origin:A multivariate approach for quantifying the latent properties of dissolved organic matter[J].Chemosphere,2002,49(10):1327-1337.
- [40]黄昌勇.土壤学[M].北京:中国农业出版社.2000.
- [41]李丽.不同级分腐殖酸的分子结构特征及其对菲的吸附行为的影响[D].广州:中国科学院广州地球化学研究所,2003.
- [42]宋海燕,尹友谊,宋建中,等.不同来源腐殖酸的化学组成与结构研究[J].华南师范大学学报:自然科学版,2009,1(1):61-66.
- [43]Lovley D R,Baedecker M J,Lonergan D J,et al.Oxidation of aromatic contaminants coupled to microbial iron reduction[J].Nature,1989,339:297-300.
- [44]Lovley D R,Lonergan D J.Anaerobic oxidation of toluene,phenol,and p-cresol by dissimilatory iron-reducing organism,GS-15[J].Applied and Environmental Microbiology,1990,56(6):1858-1864.
- [45]Wielinga B,Mizuba M M,Hansel C M,et al.Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria[J].Environmental Science&Technology,2001,35(3):522-527.
- [46]Liger E,Charlet L,Cappellen P V,et al.Surface catalysis of uranium(VI)reduction by iron(Ⅱ)[J].Geochimica et Cosmochimica Acta,1999,63(19/20):2939-2955.