内蒙古满都拉地区中二叠统哲斯组上段重力流堆积的沉积机制及地质意义Depositional Mechanisms and Geological Significances of Sediment Gravity Flow Deposits in the Upper Member of Middle Permian Zhesi Formation in Mandula Area,Inner Mongolia
梁超;解习农;史冠中;
摘要(Abstract):
内蒙古满都拉地区中二叠统哲斯组上段的重力流堆积特征对理解该区中二叠世晚期的沉积环境具有重要意义。通过对研究区哲斯组上段地层野外露头精细的沉积学研究,识别出了4种重力流沉积岩相组合类型:(1)碎屑流沉积,灰色砾岩,砾石长轴平行层面排列,基质多富含泥质;(2)混合重力流沉积,下部为灰色砾岩,上部为灰色砂岩或泥质砂岩,砾岩中砾石长轴平行层面排列,基质富含泥质,砂岩和泥质砂岩中见较多细小碎屑;(3)高密度浊流沉积,灰色块状砂岩或泥质砂岩,内部常见细小泥质碎屑,偶见干净块状砂岩中分布较多泥质粉砂岩、泥岩团块和撕裂屑;(4)低密度浊流沉积,下部为灰色薄层粉砂岩、泥质粉砂岩,向上变为薄层泥岩。垂向上4种重力流沉积类型相互叠置,发育多个沉积旋回;空间上呈席状展布。剖面对比揭示了重力流沉积由以碎屑流和混合重力流沉积为主-以高密度浊流沉积为主-以低密度浊流沉积为主的相变趋势。该重力流沉积体系中的流体转换需要周围水体的存在,指示其发育于水下环境;而以较薄的席状展布的高密度浊流和低密度浊流沉积为主,不同类型重力流沉积相互叠置,并且缺乏波浪和潮汐改造的沉积构造等现象,则暗示在该重力流沉积体系发育时期,满都拉地区可能处于远端较深水环境。
关键词(KeyWords): 重力流沉积机制;流体转换;哲斯组;内蒙古满都拉
基金项目(Foundation): 国家自然科学基金项目(91528301;41402192;41372112);; 内蒙古满都拉地区晚古生代浊积岩沉积物源研究(2014M562080)
作者(Author): 梁超;解习农;史冠中;
Email:
DOI: 10.19509/j.cnki.dzkq.2018.0607
参考文献(References):
- [1] Hampton M A,Lee H J,Locat J.Submarine landslides[J].Reviews of Geophysics,1996,34(1):33-59.
- [2] Piper D J W,Cochonat P,Morrison M L.The sequence of events around the epicentre of the 1929 Grand Banks earthquake:Initiation of debris flows and turbidity current inferred from sidescan sonar[J].Sedimentology,1999,46(1):79-97.
- [3] Sumner E J,Talling P J,Amy L A,et al.Facies architecture of individual basin-plain turbidites:Comparison with existing models and implications for flow processes[J].Sedimentology,2012,59(6):1850-1887.
- [4] Talling P J,Allin J,Armitage D A,et al.Key future directions for research on turbidity currents and their deposits[J].Journal of Sedimentary Research,2015,85(2):153-169.
- [5] Henstra G A,Grundvg S A,Johannessen E P,et al.Depositional processes and stratigraphic architecture within a coarsegrained rift-margin turbidite system:The Wollaston Forland Group,east Greenland[J].Marine&Petroleum Geology,2016,76:187-209.
- [6] Fisher R V.Flow transformation in sediment gravity flows[J].Geology,1983,11(5):273-274.
- [7] Hampton M A.The role of subaqueous debris flow in generating turbidity currents[J].Journal of Sedimentary Research,1972,42(4):775-793.
- [8] Felix M,Peakall J.Transformation of debris flows into turbidity currents:Mechanisms inferred from laboratory experiments[J].Sedimentology,2006,53(1):107-123.
- [9] Haughton P,Davis C,Mccaffrey W,et al.Hybrid sediment gravity flow deposits:Classification,origin and significance[J].Marine&Petroleum Geology,2009,26(10):1900-1918.
- [10]Talling P J,Masson D G,Sumner E J,et al.Subaqueous sediment density flows:Depositional processes and deposit types[J].Sedimentology,2012,59(7):1937-2003.
- [11]Lowe D R.Sediment gravity flows:II.Depositional models with special reference to the deposits of high-density turbidity currents[J].Journal of Sedimentary Research,1982,52(6):343-61.
- [12]Kneller B C,Branney M J.Sustained high‐density turbidity currents and the deposition of thick massive sands[J].Sedimentology,1995,42(4):607-616.
- [13]Amy L A,Talling P J.Anatomy of turbidites and linked debrites based on long distance(120km×30km)bed correlation,Marnoso Arenacea Formation,Northern Apennines,Italy[J].Sedimentology,2010,53(1):161-212.
- [14]李文国,李庆富,姜万德.内蒙古地区岩石地层[M].武汉:中国地质大学出版社,1996.
- [15]李良芳.内蒙达茂旗哲斯敖包早二叠世地层的研究[J].吉林大学学报,1980(3):21-32.
- [16]刘鹏举,郭伟.内蒙古哲斯地区早二叠世地层的新认识[J].世界地质,1998,17(2):1-5.
- [17]Chen C,Zhang Z C,Guo Z J,et al.Geochronology,geochemistry,and its geological significance of the Permian Mandula mafic rocks in Damaoqi,Inner Mongolia[J].Science China Earth Sciences,2012:55,39-52.
- [18]尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报,2004,49(24):2574-2579.
- [19]王惠,陈志勇,杨万容.内蒙古满都拉二叠纪海绵生物丘的发现及意义[J].地层学杂志,2002,26(1):33-38.
- [20]Chen Y,Zhang Z,Li K,et al.Provenance of the Middle Permian Zhesi Formation in central Inner Mongolia,northern China:Constraints from petrography,geochemistry and detrital zircon U-Pb geochronology[J].Geological Journal,2015,36(4):274-297.
- [21]李相博,刘化清,张忠义,等.深水块状砂岩碎屑流成因的直接证据:“泥包砾”结构:以鄂尔多斯盆地上三叠统延长组研究为例[J].沉积学报,2014,32(4):611-622.
- [22]廖建波,李相博,赵惠周,等.鄂尔多斯盆地延长组深水块状砂岩"泥包砾"结构成因机制[J].中国石油大学学报:自然科学版,2017,41(4):46-53.
- [23]Surlyk F.Fan-delta to submarine fan conglomerates of the Volgian-Valanginian Wollaston Foreland Group,East Greenland[J].CSPG Special Publications,1984(10):359-382.
- [24]Baas J H,Best J L,Peakall J,et al.A phase diagram for turbulent,transitional,and laminar clay suspension flows.[J].Journal of Sedimentary Research,2009,79(3/4):162-183.
- [25]Baas J H,Best J L,Peakall J.Depositional processes,bedform development and hybrid bed formation in rapidly decelerated cohesive(mud-sand)sediment flows[J].Sedimentology,2011,58(7):1953-1987.
- [26]Cantero M I,Cantelli A,Pirmez C,et al.Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents[J].Nature Geoscience,2011,5(1):42-45.
- [27]Sumner E J,Talling P J,Amy L A.Deposits of flows transitional between turbidity current and debris flow[J].Geology,2009,37(11):991-994.
- [28]Patacci M,Haughton P D W,Mccaffrey W D.Rheological complexity in sediment gravity flows forced to decelerate against a confining slope,Braux,SE France[J].Journal of Sedimentary Research,2014,84(4):270-277.
- [29]Fallgatter C,Kneller B,Paim P S G,et al.Transformation,partitioning and flow-deposit interactions during the run-out of megaflows[J].Sedimentology,2017,64(2):1-29.
- [30]Kneller B,Dykstra M,Fairweather L,et al.Mass-transport and slope accommodation:Implications for turbidite sandstone reservoirs[J].AAPG Bulletin,2016,100(2):213-235.
- [31]Zou C,Wang L,Li Y,et al.Deep-lacustrine transformation of sandy debrites into turbidites,Upper Triassic,Central China[J].Sedimentary Geology,2012,265/266:143-155.
- [32]Postma G,Cartigny M J B.Supercritical and subcritical turbidity currents and their deposits:A synthesis[J].Geology,2014,42(11):987-990.
- [33]Mccaffrey W D,Kneller B C.Process controls on the development of stratigraphic trap potential on the margins of confined,turbidite systems and aids to reservoir evaluation[J].AAPG Bulletin,2001,85(6):971-988.
- [34]Kneller B C,Mccaffrey W D.The interpretation of vertical sequences in turbidite beds:The influence of longitudinal flow structure[J].Journal of Sedimentary Research,2003,73(5):706-713.
- [35]Talling P J,Amy L A,Wynn R B,et al.Beds comprising debrite sandwiched within co‐genetic turbidite:Origin and widespread occurrence in distal depositional environments[J].Sedimentology,2004,51(1):163-194.
- [36]Pyles D R,Jennette D C.Geometry and architectural associations of co-genetic debrite-turbidite beds in basin-margin strata,Carboniferous Ross Sandstone(Ireland):Applications to reservoirs located on the margins of structurally confined submarine fans[J].Marine&Petroleum Geology,2009,26(10):1974-1996.
- [37]Rupke N A.Sedimentology of very thick calcarenite-marlstone beds in a flysch succession,southwestern Pyrenees[J].Sedimentology,1976,23(1):43-65.
- [38]Payros A,Pujalte V,Orue-Etxebarria X.The South Pyrenean Eocene carbonate megabreccias revisited:New interpretation based on evidence from the Pamplona Basin[J].Sedimentary Geology,1999,125(3):165-194.
- [39]乔博,张昌民,杜家元,等.珠江口盆地浅水区和深水区重力流沉积特征对比[J].岩性油气藏,2011,23(2):59-63.