大兴安岭北段古利库金(银)矿床流体包裹体特征与成矿机制Fluid Inclusions and Metallogenic Mechanism of Guliku Au-Ag Deposit in Northern Daxinganling
李春诚;吕新彪;杨永胜;高荣臻;
摘要(Abstract):
古利库金(银)矿床位于中生代大杨树火山断陷盆地北东缘与新元古代-早寒武世落马湖隆起的接壤部位。矿体主要赋存于下白垩统龙江组火山岩及其与新元古界-下寒武统落马湖群变质岩接触带附近,严格受古火山机构及其外围的环形断裂控制。热液成矿阶段分为早期石英阶段、玉髓-黄铁矿阶段、石英-黄铁矿阶段、石英-多金属硫化物阶段、石英-碳酸盐阶段。对古利库矿床进行的系统岩相学和流体包裹体研究表明,流体包裹体类型为富液相包裹体、富气相包裹体和纯气相包裹体,以富液相包裹体为主。成矿温度为136~367℃,从成矿早期至晚期分别为270~367,255~304,179~318,136~279℃。盐度w(NaCleqv)为1.4%~8.0%,成矿深度为1.0km,成矿流体以大气降水为主,显示低硫型浅成低温热液金矿成矿特征。含矿石英脉中广泛发育冰长石和叶片状方解石-石英,结合流体包裹体特征表明,流体的沸腾作用是引起成矿流体中矿质发生沉淀富集的主要成矿机制。
关键词(KeyWords): 古利库金(银)矿床;低硫型;成矿流体;沸腾作用
基金项目(Foundation): 中国地质调查局项目:内蒙古自治区莫力达瓦达翰尔族自治旗拉抛等八幅1∶5万区域矿产地质调查项目(NMKD2010-3);内蒙古自治区呼伦贝尔市营林区等二幅1∶5万区域矿产地质调查项目(NMKD2014-23)
作者(Author): 李春诚;吕新彪;杨永胜;高荣臻;
Email:
DOI:
参考文献(References):
- [1]Baker T,Achterberg E V,Ryan C G,et al.Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J].Geology,2004,32(2):117-120.
- [2]Fan H R,Hu F F,Yang K F,et al.Fluid unmixing/immiscibility as an ore-forming process in the giant REE-Nb-Fe deposit,Inner Mongolian,China:Evidence from fluid inclusions[J].Journal of Geochemical Exploration,2006,89:104-107.
- [3]Heinrich C A.The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:A thermodynamic study[J].Mineralium Deposita,2005,39(8):864-889.
- [4]Heinrich C A.Fluid-fluid interactions in magmatic-hydrothermal ore formation[J].Reviews in Mineralogy and Geochemistry,2007,65(11):363-387.
- [5]Kamvong T,Zaw K.The origin and evolution of skarn-forming fluids from the Phu Lon deposit,northern Loei Fold Belt,Thailand:Evidence from fluid inclusion and sulfur isotope studies[J].Journal of Asian Earth Sciences,2009,34(5):624-633.
- [6]邓军,高帮飞,王庆飞,等.成矿流体系统的形成与演化[J].地质科技情报,2005,24(1):49-54.
- [7]邓军,孙忠实,杨立强,等.成矿流体运动系统与金质来源和富集机制讨论[J].地质科技情报,2000,19(1):41-45.
- [8]张德会.成矿流体中金属沉淀机制研究综述[J].地质科技情报,1997,16(3):54-59.
- [9]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.
- [10]Wilkinson J J.Fluid inclusions in hydrothermal ore deposits[J].Lithos,2001,55(1/4):229-272.
- [11]倪培,范宏瑞,丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报,2014,33(1):1-5.
- [12]周慧,郗爱华,熊益学,等.流体包裹体的研究进展[J].矿物学报,2013,33(1):92-100.
- [13]陈开旭,姚书振,何龙清,等.云南兰坪白秧坪银多金属矿集区成矿流体研究[J].地质科技情报,2004,23(2):45-50.
- [14]刘洪,吕新彪,刘阁,等.河南罗山金城金矿成矿流体性质及演化[J].矿物岩石,2012,32(3):51-61.
- [15]杨芳林,李之彤,朱群,等.古利库金(银)矿床中冰长石的发现及其地质意义[J].贵金属地质,1999,8(4):236-240.
- [16]杨芳林,朱群,李之彤,等.古利库金(银)矿床地质特征和成因[J].贵金属地质,2000,9(1):7-14.
- [17]朱群,李之彤.大兴安岭古利库金矿区落马湖群变质岩系及其含矿性[J].地质与资源,2001,10(4):204-209.
- [18]朱群,李之彤,扬芳林,等.金银矿化水平分带的“古利库式”冰长石-绢云母型矿床成矿规律[J].矿床地质,2002,21(增刊),941-944.
- [19]朱群,王恩德,李之彤,等.古利库金(银)矿床的稳定同位素地球化学特征[J].地质与资源,2004,13(1):8-16.
- [20]朱群,王恩德,李之彤,等.古利库金(银)矿床水平及垂向矿化变化特征[J].地质与资源,2004,13(2):80-84.
- [21]时永明,朱群,高友.大兴安岭地区古利库金(银)矿床成因探讨[J].地质与勘探,2006,42(5):23-27.
- [22]冯健行.黑龙江省大兴安岭古利库岩金矿床成矿物质来源分析[J].矿产与地质,2006,20(1):54-61.
- [23]佘宏全,李红红,李进文,等.内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J].地质学报,2009,83(10):1456-1472.
- [24]赵丕忠,谢学锦,程志中.大兴安岭成矿带北段区域地球化学背景与成矿带划分[J].地质学报,2014,88(1):99-108.
- [25]朱群.古利库式冰长石-绢云母型金(银)矿床成矿模式与找矿方向[D].沈阳:东北大学,2004.
- [26]Hall D L,Sterner S M,Bodnar R J.Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology,1988,83(1):197-202.
- [27]Izawa E,Urashima Y,Ibaraki K,et al.The Hishikari gold deposit:High-grade epithermal veins in Quaternary volcanics of southern Kyushu,Japan[J].Journal of Geochemical Exploration,1990,36(1/3):1-56.
- [28]Heald P,Foley N K,Hayba D O.Comparative anatomy of volcanic-hosted epithermal deposits:Acid-sulfate and adulariasericite types[J].Economic Geology,1987,82(1):1-26.
- [29]Pirajno F.Hydrothermal processes and mineral systems[M].Berlin:Springer,2009.
- [30]Chen Y J,Pirajno F,Wu G,et al.Epithermal deposits in north Xinjiang[J].International Journal of Earth Sciences,2012,101(4):889-917.
- [31]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,2007,23(9):2085-2108.
- [32]陈衍景.初论浅成作用和热液矿床成因分类[J].地学前缘,2010,17(2):27-34.
- [33]王祥东,吕新彪,梅微,等.内蒙古拜仁达坝银铅锌多金属矿床成矿流体特征及其演化[J].矿床地质,2014,33(2):406-418.
- [34]Hedenquist J W,Lowenstern J B.The role of magmas in the formation of hydrothermal ore deposits[J].Nature,1994,370(8):519-527.
- [35]Etoh J,Taguchi S,Izawa E.Gas measurement of fluid inclusions from the Hishikari epithermal gold deposit,southern Kyushu,Japan,Using laser Raman microprobe[J].Resource Geology,2002,52(4):405-408.
- [36]John D A,Hofstra A H,Fleck R J,et al.Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit,north-central Nevada[J].Economic Geology,2003,98(2):425-463.
- [37]Canet C,Franco S I,Prol-Ledesma R M,et al.A model of boiling for fluid inclusion studies:Application to the Bolaos AgAu-Pb-Zn epithermal deposit,western Mexico[J].Journal of Geochemical Exploration,2011,110(2):118-125.
- [38]Dong G,Morrison G W.Adularia in epithermal veins,Queensland:Morphology,structural state and origin[J].Mineralium Deposita,1995,30(1):11-19.
- [39]Zhai W,Sun X,Sun W,et al.Geology,geochemistry,and genesis of Axi:A paleozoic low-sulfidation type epithermal gold deposit in Xinjiang,China[J].Ore Geology Reviews,2009,36(4):265-281.
- [40]翟德高,王建平,刘家军,等.内蒙古甲乌拉银多金属矿床成矿流体演化与成矿机制分析[J].矿物岩石,2010,30(2):68-76.
- [41]Simmons S F,Arehart G,Simpson M P.Origin of massive calcite veins in the Golden Cross low-sulfidation,epithermal AuAg deposit,New Zealand[J].Economic Geology,2000,95(1):99-112.
- [42]Simmons S F,Christenson B W.Origins of calcite in a boiling geothermal system[J].American Journal of Science,1994,294(3):361-400.
- [43]Hedenquist J W,Browne P R L.The evolution of the Waiotapu geothermal system,New Zealand,based on the chemical and isotopic composition of its fluids,minerals and rocks[J].Geochimica et Cosmochimica Acta,1989,53(9):2235-2257.
- [44]John L,Haas J R.The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure[J].Economic Geology,1971,66(6):940-946.